본문 바로가기

알고리즘 (Python)/이것이 코딩 테스트다 with 파이썬

[이진 탐색 알고리즘] 부품 찾기 - 파이썬(python)

728x90
반응형

부품 찾기

난이도 : 中下 풀이 시간 : 30분

시간 제한 : 1초 메모리 제한 : 128 MB

 


 

해답

 

def binary_search(array, target, start, end):
    while start <= end:
        mid = (start + end) // 2

        if array[mid] == target:
            return mid
        elif array[mid] > target:
            end = mid - 1
        else:
            start = mid + 1

    return None

n = int(input())
array = list(map(int, input().split()))
m = int(input())
x = list(map(int, input().split()))

for i in x:
    result = binary_search(array, i, 0, n-1)

    if result == None:
        print('no', end=' ')
    else:
        print('yes', end=' ')

예시

 

# 이진 탐색 소스코드 구현 (반복문)
def binary_search(array, target, start, end):
    while start <= end:
        mid = (start + end) // 2
        # 찾은 경우 중간점 인덱스 반환
        if array[mid] == target:
            return mid
        # 중간점의 값보다 찾고자 하는 값이 작은 경우 왼쪽 확인
        elif array[mid] > target:
            end = mid - 1
        # 중간점의 값보다 찾고자 하는 값이 작은 경우 오른쪽 확인
        else:
            start = mid + 1
    return None

# N(가게의 부품 개수) 입력
n = int(input())
# 가게에 있는 전체 부품 번호를 공백을 기준으로 구분하여 입력
array = list(map(int, input().split()))
array.sort() # 이진 탐색을 수행하기 위해 사전에 정렬 수행
# M(손님이 확인 요청한 부품 개수) 입력
m = int(input())
# 손님이 확인 요청한 전체 부품 번호를 공백을 기준으로 구분하여 입력
x = list(map(int, input().split()))

# 손님이 확인 요청한 부품 번호를 하나씩 확인
for i in x:
    # 해당 부품이 존재하는지 확인
    result = binary_search(array, i, 0, n - 1)
    if result != None:
        print('yes', end=' ')
    else:
        print('no', end=' ')

해설

 

다량의 데이터 검색을 요구하는 문제이므로 이진 탐색 알고리즘을 이용하여 효과적으로 처리할 수 있습니다.
부품을 정렬한 뒤 정렬된 부품들을 이진 탐색을 수행하면 됩니다.
부품을 찾는 과정에서 최악의 경우 O(M*logN)의 연산이 필요하므로 이론상 최대 약 200만 번의 연산이 이루어진다고 볼 수 있습니다.
부품을 정렬하기 위해서 요구되는 시간 복잡도 O(N*logN)이 이론적으로 최대 약 2,000만 번이 연산이 필요하다고 볼 수 있습니다.
결론적으로 이진 탐색을 사용하는 문제 풀이 방법의 경우 시간 복잡도는 O((M+N)*logN)입니다.
728x90
반응형